

1 Use the Smith chart to find the following quantities for the transmission line circuit shown in the accompanying figure:

- (a) The SWR on the line.
- (b) The reflection coefficient at the load.
- (c) The load admittance.
- (d) The input impedance of the line.
- (e) The distance from the load to the first voltage minimum.
- (f) The distance from the load to the first voltage maximum.

[2] Use the Smith chart to find the shortest lengths of a short-circuited 75Ω line to give the following input impedance:

- (a) $Z_{in} = 0$.
- (b) $Z_{in} = \infty$.
- (c) $Z_{in} = j75 \Omega$.
- (d) $Z_{in} = -j50\Omega$
- (e) $Z_{in} = j10\Omega$

3 Repeat Problem 2 for an open-circuited length of 75Ω line.

[4] A slotted-line experiment is performed with the following results: distance between successive minima = 2.1 cm; distance of first voltage minimum from load = 0.9 cm; SWR of load = 2.5. If $Z_0 = 50 \Omega$, find the load impedance.

5 Consider the quarter-wave matching transformer circuit shown in the accompanying figure. Derive expressions for V^+ and V^- , the respective amplitudes of the forward and reverse traveling waves on the quarter-wave line section, in terms of V^i , the incident voltage amplitude.

[6] A 50 Ω transmission line is matched to a 10 V source and feeds a load $z_l = 100$ Ω . If the line is 2.3 λ long and has an attenuation constant $\alpha = 0.5$ dB/ λ , find the powers that are delivered by the source, lost in the line, and delivered to the load.

Good Luck

Dr. Sherif Hekal